
API Docs

Unity Plugin

Overview

Convai's Unity Plugin provides you with all the tools you need to integrate conversational AI into your
Unity projects. Convai offers specialized NLP-based services to build intelligent NPCs for your games and
virtual worlds. Please refer to our for a full tour of our services and support for other engines.website

Download the Core Unity Plugin from this link.

This is the Core version of the plugin. It has a sample scene for anyone to get started. This version of the
plugin only contains the basic Convai scripts and Character Downloader.

Quick Setup Tutorial

Create AI Characters in Unity | Convai Plugin Setup Tutorial [Part 1]Create AI Characters in Unity | Convai Plugin Setup Tutorial [Part 1]

Unity Plugin Quick Setup Video

https://convai.com/
https://drive.google.com/file/d/1dslrRcI6e02LvL-coupUoTFRlBDLjvMA/view
https://www.youtube.com/watch?v=Vhr7IvfITgU

Downloads

We have multiple versions of the plugins with different features. You can find them below:

Version Features Download Link

Unity Verified Solution
(Recommened)

This is the Long Term Support version of
our core version. It contains all the
necessary tools for adding
conversational AI to your characters. It
also includes Lip Sync and Head and
Eye Tracking. You can also add actions
which the characters can do on
command.

Download here.

Complete

This version of the plugin comes out of
the box with Ready Player Me characters
integrated with Lip Sync and Head and
Eye Tracking. You can easily import
characters and save them as prefabs to
use throughout the project. You can also
add actions which the characters can do
on command.

Download here.

WebGL

[EXPERIMENTAL]
This plugin version should be used if you
need to build for WebGL. Please ensure
that Git is installed on your computer
prior to proceeding.

Download here.

Demo Project

We have a sample package containing a sample scene for anyone to get started. The Assets/Scenes
folder contains a fully functional Conversation AI-enabled NPC capable of conversing, along with LipSync,
Ready Player Me, and Basic Head and Eye Following.

To create your own NPC and understand how our pipeline works, follow this link.

Click here to download a Demo with OVR Lipsync, RPM Integration, and Head and Eye
Tracking.

Check out the Demo Scene in the Assets/Scenes Folder!

https://assetstore.unity.com/packages/tools/ai/npc-ai-dialog-actions-and-general-intelligence-by-convai-235621
https://drive.google.com/file/d/1dslrRcI6e02LvL-coupUoTFRlBDLjvMA/view?usp=share_link
https://drive.google.com/file/d/1pFiogPV41rOqWdDkCY82qcqrAlbo-Z3N/view?usp=sharing
https://drive.google.com/file/d/1Y9hfv3SCtJtxJ-e3hSiDEtW1gdMLLIDo/view?usp=share_link

Pre-Requisites

The Convai Unity SDK supports a minimum of Unity 2019.4.11f1 LTS or later.

Unity Version: Unity 2019.4.11f1 LTS or later. You must have this version of Unity. Earlier versions
are not supported.

In order to successfully use the Plugin, you should know how to

import external packages into a Unity project,

navigate the Unity Editor interface,

add and handle animations to assets,

program Unity scripts in C#,

add scripts to a Game Object,

build and deploy an application to your chosen platform.

Compatibility

Development Operating System

You can only develop the corresponding versions of the Convai Unity Plugin based on your preferred
operating system.

Operating System Compatible Unity Plugin Versions Notes

Windows Core, Complete

Mac Core, Complete
Requires you to allow access to t
"grpc_csharp_ext.bundle" from
Privacy & Security settings.

Linux N/A Untested on Unity for Linux

WebGL WebGL

Unity Version

Unity Version Tested Version API Level

2020.3 2020.3.34f1 .NET 4.x Only

2021.1 2021.1.21f1 .NET 4.x Only

2021.2 2021.2.0f1 .NET Standard 2.1 or .NET Framework

2021.3 2021.3.2f1 .NET Standard 2.1 or .NET Framework

2022.1 2022.1.24f1 .NET Standard 2.1 or .NET Framework

2022.2 2022.2.11f1 .NET Standard 2.1 or .NET Framework

Disabling Assembly Validation

If you ever get an error that looks like this, disable the Assemble Version Validation in Project
Settings > Player > Other Settings .

Assembly 'Assets/Convai/Plugins/Grpc.Core.Api/lib/net45/Grpc.Core.Api.dll' will not be
loaded due to errors:
Grpc.Core.Api references strong named System.Memory Assembly references: 4.0.1.1 Found in
project: 4.0.1.2.

Platform

Other platforms will be tested and updated shortly.

Tested Platform Scripting Backend API Level

Windows MONO .NET Standard 2.1 or .NET 4

Android IL2CPP .NET 4.x

Oculus IL2CPP .NET 4.x

Creating Characters
Follow these instructions to create the character that you want to add to your scene.

We recommend doing these steps before importing and setting up the Unity project so that we
already have the API Key and the character ID ready.

Go to , and sign in to your Convai account. Signing in will redirect you to the Dashboard. From
the dashboard, grab your API key.

convai.com

Copy the API Key.

Click the Create Character button or go to the dashboard to select an existing character.

https://convai.com/

If you have created a character, fill out the relevant details or customize your character through Ready
Player Me.

Enter Character's Name, Voice and Backstory.

Customize your character through Ready Player Me.

Press "Next" when satisfied with your character.

And then press Create Character.

Click Create Character.

Click Create Character.

Copy the character ID. Now you are ready to start working with Convai’s Unity Plugin.

Copy the Character ID.

Import and Setup
Follow these steps to import and configure the Unity SDK.

The package contains sample scenes to get started.
Download the Unity Package from this link.

Download the WebGL version of the plugin, if you want to build for WebGL.

The file structure belongs to the nightly version of the plugin downloaded from the
documentation.

https://drive.google.com/file/d/1dslrRcI6e02LvL-coupUoTFRlBDLjvMA/view

1. If you haven't already done so, download the SDK .here

2. Start the Unity Hub.

3. Verify that your project uses Unity 2019.4.11f1 LTS or later (check the Pre-Requisites section of the
documentation).

4. Open your project.

5. Select Assets > Import Package > Custom Package.

6. In the file explorer, select the Convai Unity package.

The filename is similar to ConvaiforUnity_vX.Y.Z.unitypackage . X, Y, and Z are numbers
containing the version information of the plugin.

7. Click Import. Wait for the import to complete.

8. If you are using a Unity Version pre-2022.3.0f1, Disable Assembky Version Validation (use this
troubleshooting page:)Enabled Assembly Validation

9. Verify there were no compiler errors.

If you face any errors, visit our page to resolve our most common
issues.

Troubleshooting Guide

Package contents

After importing, by default, the Convai folder will be in your project. It should look something like this.

The file structure belongs to the Core version of the plugin downloaded from the documentation.

https://convai.com/download/UnityPlugin

Open the Convai Streaming Demo scene in the Scenes folder you'll see a Scene setup with Convai Tools
and a Default character (named Ellen) with whom you can converse. This will not work right now, since
you have not added the API key yet. Continue to see how you can talk to this character and set up your
own character.

Troubleshooting Guide

Common Issues (FAQ)

Q. I cannot see the Convai menu.

A. Please check if there are any errors in the console. Unity needs to be able to compile all the scripts to
be able to display any custom editor menu options. Resolving all the console errors will fix this issue.

Q. There are a lot of errors on my console.

A. Primarily, three issues cause errors in the console that can stem from the Convai Unity Plugin. You can
use the links below to fix them quickly.

1. Enabled Assembly Validation

2. Missing Newtonsoft Json

3. Missing Animation Rigging

Q. I am talking to the character, but I cannot see the user transcript and the character does not seem to be
coherently responding to what I am saying.

A. This may indicate issues with the microphone. Please ensure that the microphone is connected
correctly. You also need to ensure that the applications have permission to access the menu.

Microphone Permission Issues

Q. My character seems to be saying something and I can see the transcript but I cannot hear the character.

A. If we are using OVR with our models, we might need to enable audio loopback so that the audio can
play.

OVR Lipsync Audio Loopback not Enabled

Q. The animations for my characters are looking very weird.

A. The animation avatar that we are using might be incompatible with the character mesh. Fixing that can
solve the issue.

Default Animations Incompatibility

Q: The lipsync is very faint or not visible.

A: The animations that we are using may be modifying facial animations. Editing the animations to remove
facial animations should fix any issues related to lipsync.

Animations have Facial Blendshapes

A: The script also needs the avatar to not be mapped to the jaw bone to be manipulate the jaw bones
itself.

Jaw Bone in Avatar is not Free

Q: I'm facing security permission issues using the grpc_csharp_ext.bundle DLL inside the
Unity Editor on MacOS

A: macOS's strict security measures can block certain external unsigned DLLs. To address this, you can
manually allow the DLL in "Security & Privacy" settings, modify Gatekeeper's settings through Terminal,
ensure correct file permissions for the DLL, check its settings in Unity, and update the Mac Configuration in
Unity's Player Settings

macOS Permission Issues

Q: I'm not able to talk to my character after building my Unity project for macOS (Intel64+Apple
Silicon builds), especially on Intel Macs

A: The issue is rooted in the grpc_csharp_ext.bundle used in Unity for networking. This DLL has
separate versions optimized for Intel and Apple Silicon architectures. When trying to create a Universal
build that serves both, compatibility problems arise, especially on Intel Macs. Presently, the best solution is
to use Standalone build settings specific to each architecture.

Microphone Permission Issue on Intel Macs with Universal Builds

Error Index

Follow this Table to navigate to our most common errors.

Name Sample Error Reason for Error Text

Enabled
Assembly
Validation

Assembly
'Assets/Convai/Plugi
ns/Grpc.Core.Api/lib
/net45/Grpc.Core.Api
.dll' will not be
loaded due to
errors:
Grpc.Core.Api
references strong
named System.Memory
Assembly references:
4.0.1.1 Found in
project: 4.0.1.2.

Unity, by default, checks
for exact version
numbers for the included
assemblies. For our
plugin, this is not
necessary, since we use
the latest libraries.

Enabled
Assembly
Validation

Missing
NewtonSoft Json

Assets\Convai\Plugin
s\GLTFUtility\Script
s\Spec\GLTFPrimitive
.cs(8,4): error
CS0246: The type or
namespace name
'JsonPropertyAttribu
te' could not be
found (are you
missing a using
directive or an
assembly reference?)

Our plugin needs
Newtonsoft Json as a
dependency. It is often
present as part of Unity
but occasionally, it can
be missing.

Missing
Newtonsoft Json

Missing
Animation
Rigging

Assets\Convai\Script
s\Utils\HeadMovement
.cs (2,30): error
CS0234: The type or
namespace name
'Rigging' does not
exist in the
namespace
'UnityEngine.Animati
ons' (are you
missing an assembly
reference?)

We use the Animation
Rigging package for Eye
and Neck tracking. If
Unity does not
automatically add it, we
need to add it manually
from the package
manager.

Missing
Animation Riggin

Microphone
Permission

The microphone icon lights
up but there is no user
transcript in the chat UI. The

The plugin requires
microphone access

Issues character seemingly not
replying to what the user is
saying.

which is sometimes not
enabled by default.

Microphone
Permission Issue

OVR Lip-sync
Audio Loopback
not Enabled

There is not sound coming
from the character but
transcripts are visible.

OVR Lipsync
Audio Loopback
not Enabled

Default
Animations
Incompatibility

The default animations that
ship with the plugin seems
broken. The hands seem to
intersect with the body.

The animation avatar is
incompatible with the
character mesh.

Default
Animations
Incompatibility

Animations have
Facial
Blendshapes

The Lip-sync from
characters are either not
visible or are very faint.

Some types of
animations control facial
blendshapes. These
animations prevent the
lip-sync scripts to
properly edit the facial
blendshapes.

Animations ha
Facial Blendshap

Jaw Bone in
Avatar is not Free

The Lip-sync from
characters are either not
visible or are very faint.

The animation avatar for
the character may be
using the Jaw Bone. If
we set the mapping free
to none, the script will be
able to manipulate the
jaw bone freely.

Jaw Bone in
Avatar is not Free

Mac Security
Permission Issue

Security Permission Issues
with

grpc_csharp_ext.bun
dle DLL in Unity on
MacOS.

MacOS's security
protocols can prevent
certain unsigned
external DLLs, like

grpc_csharp_ext.b
undle , from functioning
correctly in Unity.

macOS
Permission Issue

Microphone
Permission Issue
with Universal
Builds on Intel
Macs in Unity

No Microphone access
request pops up

Incompatibility between
Intel and Apple Silicon
versions of

grpc_csharp_ext.b
undle when attempting
a Universal build.

Microphone
Permission Issue
on Intel Macs with
Universal Builds

For any other issues, please feel free to reach out to or on our .support@convai.com Discord Server

mailto:support@convai.com
https://discord.gg/pCKPxpn352

Enabled Assembly Validation

If you ever get an error that looks like this, disable the Assemble Version Validation in Project
Settings > Player > Other Settings .

Assembly 'Assets/Convai/Plugins/Grpc.Core.Api/lib/net45/Grpc.Core.Api.dll' will not be
loaded due to errors:
Grpc.Core.Api references strong named System.Memory Assembly references: 4.0.1.1 Found in
project: 4.0.1.2.

Ensure that Assembly Validation is disabled in Project Settings > Player > Other
Settings .

Restart the Unity project after unchecking the box should fix the issue.

Missing Newtonsoft Json

Our plugin has various scripts and dependencies that use Newtonsoft Json. If Newtonsoft Json is missing
from the plugin, it could lead to a large number of errors as shown below:

Ensure that NewtonSoft.Json is present in your packages. Go to your project folder.

Then navigate to Packages folder. In the Packages folder. Click on manifest.json. A json file containing the
project dependacies should open up.

Add the Newtonsoft Json Package on top.

"com.unity.nuget.newtonsoft-json": "3.0.2",

The final manifest.json should look like this.

{
 "dependencies": {
 "com.unity.nuget.newtonsoft-json": "3.0.2",
 "com.unity.animation.rigging": "1.1.1",
 "com.unity.ide.rider": "3.0.16",

 "com.unity.ide.visualstudio": "2.0.16",
 "com.unity.ide.vscode": "1.2.5",
 "com.unity.test-framework": "1.1.33",
 "com.unity.textmeshpro": "3.0.6",
 "com.unity.timeline": "1.6.4",
 .
 .
 .
 }
}

Missing Animation Rigging

Ensure that you have the Animation Rigging Package present, if you want to use Eye and Neck Tracking.

To import it, go to Windows > Package Manager.

Go to the Unity Registry.

In the Packages Tab, Scroll down to find the package Animation Rigging and Click Install.

FindObjectsOfTypeAll Error

Microphone Permission Issues

If you see the microphone indicator turning on in the top left corner, but no user transcript in the chat UI and
the character's response doesn't seem coherant to what you said, then it is likely that the game or Unity is
nto accessing the correct microphone or does not have sufficient microphone privilege. To fix this, please
follow along.

Microphone indicator is on but there is no user transcript in the chat UI.

Character did not respond accurately to your specific query.

For Windows

First, we want to ensure that the correct microphone is set as the default microphone.

Second, we head into microphone properties (the > icon on the right of the selected Microphone) and
ensure the we have access to the microphone.

Click allow so that apps can access the microphone.

Set the mic as the default sound device.

OVR Lipsync Audio Loopback not Enabled

This error occurs when using Oculus Lip-Sync (default when importing Ready Player Me character). We
can see the Lip-Sync happening and response is received and displayed as character transcript. But we
cannot hear the response from the cahracter. This is could be due to the audio loopback not enabled in the
OVRLipSyncContext component in the NPC GameObject.

To enable it, head to the NPC GameObject and scroll down to the OVR Lip Sync Context component and
check the Audio Loopback flag.

Default Animations Incompatibility

If the default animations that ship with the animator look bugged such that the hand seems to intersect with
the body, it could indicate an issue with the wrong animation avatar being selected.

You can easily fix that by heading to the character's animator component and assigning the correct
animator to the Avatar field.

The correct animation will look something like this. The hands should not intersect the body.

Animations have Facial Blendshapes

If the Lip-sync from characters are either not visible or are very faint, if could be a result of character's
animations overriding the blendshape changes made by the script. We recommend deleting the relevant
components in the animation dopesheet.

The blendshapes in the CC_Base_Body's Skinned Mesh Renderer. We shall delete these.

Jaw Bone in Avatar is not Free

If the Lip Sync does not seem to cause any facial animations, even after removing all blendshapes from
animations, then the following steps should help resolve the issue.

This is a known issue in Reallusion CC4 characters.

Select the Character and head to the Animator component.

Click the Avatar Field once to select the character's avatar in the Project window.

Select the Avatar and click Configure Avatar.

Select the Head option in the Mapping tab.

Select the Jaw Mapping and set it to None.

Finally scroll down and click Apply.

This will free the avatar's jaw mapping and allow the script to manipulate the Jaw bones.

macOS Permission Issues
macOS security permission issue with custom DLLs in Unity and Mac Configuration
in build settings

Allowing the grpc_csharp_ext.bundle dll file in macOS

Using external DLLs in Unity on MacOS can lead to security permission issues due to Apple's strict
security measures. Here's a step-by-step guide to resolving this common problem.

1. Verify the Problem:

2. Manually Allow Blocked DLLs:

Open System Preferences on your Mac.

Navigate to "Security & Privacy".

Under the "Security" tab, you might see a message at the bottom about the DLL being blocked.
Click "Allow Anyway" or "Open Anyway" and enter password if asked.

3. Modify Gatekeeper settings: MacOS's Gatekeeper can prevent unidentified developers' software
from running. To allow the DLL:

Open the Terminal (found in Applications > Utilities).

Type sudo spctl --master-disable and press Enter.

This command will allow apps to be downloaded from anywhere.

Now, try running the Unity project again.

After you're done, you should re-enable Gatekeeper with sudo spctl --master-enable
to avoid any malware.

4. Check File Permissions: Ensure the DLL has the correct file permissions.

In Finder, right-click (or control-click) on the DLL file and choose "Get Info".

Under “Sharing & Permissions”, ensure that your user account has "Read & Write" permissions.

5. Review Unity's Plugin Settings:

In the Unity editor, select the DLL in the Project view.
In the Inspector window, make sure the appropriate platform (in this case, Mac OS X) and
architecture (Apple Silicon, Intel-64) is selected for the DLL.

Ensure that the "Load on Startup" and other pertinent options are checked (should be enabled by
default)

Mac Configuration in Player Settings during build

Update Mac Configuration:

In Unity, navigate to Edit > Project Settings > Player .

Scroll down and click on Other Settings

Scroll down again to find Mac Configuration section

Update the Mac Configuration section (follow the below Screenshot)

Microphone Permission Issue on Intel Macs with
Universal Builds

Problem:

When attempting to build a Unity project for macOS with the Universal build setting, users have reported
an issue pertaining to microphone permissions. Specifically, while Apple Silicon Macs exhibit no
problematic behavior, Intel Macs may not successfully access the microphone due to underlying
architectural differences.

Symptoms:

Lack of response or inaccessibility of the microphone.

Possible error messages or prompts relating to microphone permissions.

Potential application crashes when trying to utilize microphone features.

No audio input detected or recorded within the application.

Cause:

The heart of this issue lies within the grpc_csharp_ext.bundle , a fundamental component for
networking within Unity projects. Distinct versions of this DLL have been developed: one catering to the
Intel architecture and another optimized for the Apple Silicon ARM64 framework. The challenges arise
when attempting to cater to both architectures simultaneously:

The inherent differences between the two DLL versions, driven by the vastly different architectures,
prevent them from being seamlessly merged or universally applied.

Presently, grpc does not offer dedicated support or resolution for these discrepancies, especially in the
context of Unity or Xamarin.

Efforts to modify the Universal app post-build to make it functional for Intel machines introduce further
complications. macOS's security protocols interpret these modifications as potential threats, preventing
the app from running on ARM machines.

Introducing additional files to rectify the situation for ARM disrupts functionality for Intel, creating a
cyclic challenge without a straightforward resolution.

Solutions:

1. Standalone Build Settings for Intel Macs:

If you are using an Intel Mac, the recommendation is clear: Opt for Standalone builds targeted
specifically for the Intel architecture. This will ensure compatibility and seamless microphone
access.

2. Standalone Build Settings for Apple Silicon Macs:

Even if you possess an Apple Silicon Mac, it's advisable to lean towards Standalone builds for the
ARM64 framework. While Universal builds remain an option, Standalone builds guarantee
optimal performance and functionality.

3. Update Unity:

Always ensure you are working with the latest or recommended version of Unity suitable for
macOS builds. Some nuances or bugs might be addressed in newer releases or specific patches.

4. External Plugins:

If your project leverages external plugins or libraries, especially those interacting with the
microphone, ensure they are up-to-date and compatible with the macOS version you aim to target.

Double-check if these plugins support Universal builds or if distinct versions exist for Intel and
Apple Silicon.

Please contact Convai Support at if none of the solutions worksupport@convai.com

Conclusion:

Building for macOS, given the coexistence of Intel and Apple Silicon architectures, presents unique

challenges. When leveraging grpc_csharp_ext.bundle , the limitations become pronounced. For
now, the Standalone build settings remain the safest and most effective path forward, ensuring both
compatibility and functionality across architectures. As the landscape evolves, one can hope for more
integrated solutions in the future.

mailto:support@convai.com

Setting Up Unity Plugin
Follow these instructions to setup the Unity Plugin into your project.

The file structure belongs to the Core version of the plugin downloaded from the documentation.

Setting up Unity Plugin

In the Menu Bar, go the Convai > Convai Setup.

Enter the API Key and click begin.

This will create an APIKey asset in the resources folder. This contains your API Key.

Click the Convai gRPC NPC GameObject and add the Character ID. Now you can converse with the
character. The script is set up so that you have to get near to the character for them to hear you.

Now you can test out the Convai Streaming Demo Scene and talk to the Character Present there. Her
name is Ellen, by the way, and she is a member of the Stellar Survey Corps.

You can open the Convai NPC Script to replicate or build on the script to create new NPCs.

Edit the ConvaiNPC.cs script directly to maintain compatibility with the Utility scripts.

Building for WebGL

Our Unity Asset Store, Core, Complete, and Action versions of the plugins can only build standalone
applications.

Download the WebGL version of the Unity Plugin here.

Download a Complete Demo with Multiple Characters here.

Try out the Demo on itch.io here.

Please ensure that Git is installed on your computer prior to proceeding.
Download Git from here.

Follow the Import and Setup Instructions from and . Import and Setup Setting Up Unity Plugin

If you face an error with missing Ready Player Me, add these lines to your manifest.json file in <Project
Folder>/Packages folder.

"com.atteneder.gltfast": "https://github.com/atteneder/glTFast.git#v5.0.0",
"com.readyplayerme.avatarloader": "https://github.com/readyplayerme/rpm-unity-sdk-avatar-loa
"com.readyplayerme.core": "https://github.com/readyplayerme/rpm-unity-sdk-core.git#v1.3.2",
"com.readyplayerme.webview": "https://github.com/readyplayerme/rpm-unity-sdk-webview.git#v1.

https://drive.google.com/file/d/1pFiogPV41rOqWdDkCY82qcqrAlbo-Z3N/view?usp=sharing
https://drive.google.com/file/d/1NnkPZflOpSNYRrfFyV01chkoEMNj5YTp/view?usp=sharing
https://convai.itch.io/webgl-demo
https://git-scm.com/downloads

Updating Ready Player Me packages (Core, WebView and AvatarLoader) to the latest version

causes a persistent error: The type or namespace name 'GLTFDeferAgent'
could not be found

If prompted to update, please do not update Ready Player Me packages. Just click cancel. Last
successfully tested version for Ready Player Me is as follows:

Core: v1.3.2

WebView: v1.2.0

AvatarLoader: v1.3.3

If you have already upgraded, you can add these line to replace the corresponding existing

lines to the <project folder>/Packages/manifest.json to revert the Ready Player

Me packages to last stable version: "com.readyplayerme.avatarloader":
"https://github.com/readyplayerme/rpm-unity-sdk-avatar-
loader.git#v1.3.3",
 "com.readyplayerme.core": "https://github.com/readyplayerme/rpm-
unity-sdk-core.git#v1.3.2",
 "com.readyplayerme.webview":
"https://github.com/readyplayerme/rpm-unity-sdk-
webview.git#v1.2.0",

When you are about to play the scene in the editor, you will notice that you are facing this error when you
get in the range of the character.

EntryPointNotFoundException: initializeConvaiClient assembly:<unknown assembly> type:
<unknown type> member:(null)
ConvaiGRPCWebAPI.OnTriggerEnter (UnityEngine.Collider other) (at
Assets/Convai/Scripts/Utils/ConvaiGRPCWebAPI.cs:80)

This is because we cannot test WebGL directly from the Unity Editor. We will have to create a
development build to test out WebGL.

Before we do that, we will move the WebGL Templates folder out of the Convai folder and place it inside
the Assets folder.

This will allow Unity to recognize the custom WebGL Template.

Open the Project Settings > Player Settings and head over to the WebGL settings. Under the Resolution
and Presentation tab, select the Convai Template or the Convai PWA Template.

Then open the Build Settings, and switch your build platform to WebGL.

Check the development build field and then click on Build and Run.

Select the Folder where you want the build to be.

A WebPage with the WebGL version of the game will open up. Allow the microphone, and you are good to
go!

For subsequent Build and Runs, use the Unity shortcut key Ctrl + B.

When you are ready with your production build, just uncheck the Development Build field in the
Build Settings and you are set!

Importing a character from Convai Playground
Follow these instructions to bring a character from the Convai Playground into your
Unity Project.

You can import the character created in the Convai Playground only in the Core, Complete, and
Actions versions of the plugin.

Core Plugin

This is how you can import characters from the Convai Playground into your Unity Project.

In the Menu Bar, go the Convai > Character Importer.

Enter the Character ID and click Import.

Enter the character ID and click Import.

If you are unsure how to get the character ID, click the "How do I create a character?".

You can get the character ID from the Character Description.

The downloading will take a while. On successful download, you will see the character in the scene with
th G Obj t th h t ID

the same GameObject as the character ID.

This character will automatically be set up with the basic Convai Setup including the ConvaiNPC Script
and Out-Of-Box Animations.

If you are facing issues with the animations in your imported character, make sure to change the animation

t f Ell @Idl N d Ell @T lki N A i ti i th

type of Ellen@IdleNew and Ellen@TalkingNew Animations in the

Assets/Convai/Animations folder to Humanoid .

Change the animation type to 'Humanoid' and click 'Apply'.

Now you are ready to set up the character with transcriptions.

Follow the tutorial on importing custom characters below to see how you can set up the character with
Transcriptions and Custom Animations.

Importing Custom Characters

Complete Plugin

For the Complete Plugin, the process of importing the character is different. First, we will want to create a
scene that is compatible with the Convai. This scene needs to have the Convai Player Character and the
Convai Transcript Canvas prefabs (or similar prefabs). For the Core Plugin, we do this manually, but for the
Complete Plugin, the setup process is automated.

First, we will click on File > New Scene.

Click on New Scene in the File Menu

In the Dialogue that opens, select Convai Scene and click Create.

Click on Convai Scene and click create.

Then go the Convai > Character Importer.

Enter the Character ID and click Import.

Enter the character ID and click Import.

This will import your character completely set up with Lip Sync and basic animations.

The character is in the scene.

You can also see the prefab for the character in the Assets/Convai/Prefabs folder.

Character Prefab is in the Assets/Convai/Prefabs folder.

With this, you can use the Convai-powered RPM character in any scene in the project if you want.

Importing Custom Characters
Follow these instructions to set up your imported character with Custom Model with
Convai.

To import your custom characters into your Convai-powered Unity project, you will first need to bring your
model into your project. The model needs at least two animations: one for Talking and one for Idle.

Part 1: Character

When you want to set up your custom character with Convai, you will need your character model and two
animations: Idle and Talking.

Create an animator controller with the two animations that looks like this. You should also add a 'Talk'
boolean to ensure that you can trigger the animation.

. This is the bare minimum animator setup that you need to do.
Here is a YouTube tutorial on how to set up an

animator controller

The animator controller should look like this. This is the the in-box NPC Animator.

Add an animator component and the created animator controller to the component. NPC Animator is the
name of the animator that ships out of the box with the plugin. You will want to replace this with your own
animator.

https://www.youtube.com/watch?v=JeZkctmoBPw&t=53s

The animator component with the in-box "NPC Animator"

Add a Capsule (or any other shape of choice) Collider and make it into a trigger by selecting the IsTrigger
field.

Add an Audio Source component to the character.

The GameObject should look like this.

Finally, change the Tag of the Convai-powered NPC to "Character" so that it can work with the in-box
Convai Player Character.

Change the tag from "Untagged" to "Character"

The next page gives a brief overview of the ConvaiNPC.cs script.

Part 2: Transcriptions and Captions

You will have to do this part of the setup for characters downloaded from the playground
through the character downloader if you are using the Core version of the plugin.

Create a Canvas with two TextMeshPro GameObjects. One of these will be where the transcript appears
as we speak and the other will be where the character's transcript appears.

Drag the User Transcript TextMeshPro (named User Text here) to the User Text field in the Convai
GRPCAPI script present in the Camera component in the Convai Player Character.

Go to the camera component of the Convai Player Character.

Add the User Text TextMeshPro GameObject to the User Text field.

Drag the Character's Transcript TextMeshPro to the Character Text field in the Convai NPC script in the
character that you added.

Add the Character Text TextMeshPro GameObject to the Character Text field.

This will set up the new Character and you can talk to it.

Adding Actions to your Character
Follow these instructions to enable actions for your Convai-powered characters.

This feature is currently experimental and can misbehave. You are free to try it out and leave us
any feedback.

Download the Actions Version of our plugin from this link

The actions version of the plugin is a fork of the RPM Version of the plugin. This means that you can easily
import characters and play around with them. To use custom characters with the actions version, first set
up the character with Convai.

Importing Custom Characters

After setting it up, add the script name ConvaiActionsHandler.cs to the GameObject. This script keeps
track of all the actions that the character can do along with an enum that is used internally to trigger the
functions corresponding to the actions.

https://drive.google.com/file/d/1wWyecai-srBuzPrYT7FeeeW-Pk_ifcJU/view

Add the ConvaiGlobalActionSettings.cs to an empty GameObject in the scene. This script will contain all
the interactable objects and characters in the scene.

Add the following fields:

Field Description

Characters

(in Convai Global
Action Settings)

Characters that are present in the scene.
Add the GameObject of the Character and the Description of the
Character.

Objects

(in Convai Global
Action Settings)

Interactable Objects that are present in the scene.
Add the GameObject of the Interactable Object and the Description of t
object.

Action Methods

(in Convai Actions
Handler)

Actions that can be performed by the character.
Add the ActionChoice describing the action and the name of the
animation state corresponding to the action (the animation must be
present in the animator).

Adding Custom Actions

To add custom actions, edit the ConvaiActionsHandler.cs script.

If your action is cosmetic and is only an animation, you do not need to edit the code. Simply

select the Action Choice None .

Add the ActionChoice enum at the beginning to identify the action in script.

// STEP 1: Add the enum for your custom action here. 1
public enum ActionChoice2
{3
 NONE,4
 JUMP,5
 CROUCH,6
 MOVE_TO,7
 PICK_UP,8
 DROP,9
 DANCE,10
 // add your action choice enum here.11
}12

Add the Function call corresponding to the action and the ActionChoice enum in the switch case in

the DoActions() function.

bli i (i i i)

public IEnumerator DoAction(ConvaiAction action)
{
 // STEP 2: Add the function call for your action here corresponding to your enum.
 // Remember to yield until its return if it is a Enumerator function.

 switch (action.verb)
 {
 case ActionChoice.MOVE_TO:

 yield return MoveTo(action.target);

 break;

 case ActionChoice.PICK_UP:

 yield return PickUp(action.target);

 break;

 case ActionChoice.DROP:

 Drop(action.target);

 break;

 case ActionChoice.DANCE:

 yield return Dance();

 break;

 case ActionChoice.JUMP:

 Jump();

 break;

 case ActionChoice.CROUCH:

 yield return Crouch();

 break;

 // Add a new case with the ActionChoice Enum.
 // Call the function in this Case.

 case ActionChoice.NONE:

 yield return AnimationActions(action.animation);

 break;

 default:

 break;
 }

 yield return null;
}

Add the Function that the action will be doing at the end.

Now, add the corresponding animation to the Animator. Take note of the animation state.

Add the animation for the new action.

Finally, in the Action Methods add the action information.

Add the new action information to the action methods array.

If your action is cosmetic and is only an animation, you do not need to edit the code. Simply

select the Action Choice None .

Adding Lip-Sync to your Character

To add Lip-Sync to your character, follow these steps.

Convai's Lip-Sync uses or Reallusion CC4 Extended (Reallusion CC4+) Blendshapes.
The lip-sync will work best with models that have OVR or Reallusion CC4 Extended
(Reallusion CC4+) compatible Blendshapes.

OVR

Select the character GameObject and click Add Component in the Inspector.

Select Convai Lip Sync to add the Lip Sync component.

https://developer.oculus.com/documentation/unity/audio-ovrlipsync-viseme-reference/

In the new component, select the type of lipsync, and assign the Skinned Mesh Renderer with the Facial

Blendshapes (here for Reallusion Characters, CC_Base_Body , CC_Base_Teeth and

CC_Base_Tongue) and the game objects corresponding to the bones for Jaw and Tongue (here for

Reallusion Characters, CC_Base_JawRoot and CC_Base_Tongue01). Feel free to adjust the
position of the tongue with the Tongue Bone Offset field.

Currently, only Reallusion Plus and OVR are supported as a type of lip sync.

If your character's mouth seems to not be opening enough for a proper lip sync, this could
indicate an issue with the animator or animations.

To resolve common issues caused by the animator and animations, follow the troubleshooting guides
below.

Animations have Facial Blendshapes

Adding Scene Reference and Point-At
Crosshairs

You can point at Interactable Objects and Characters and ask your characters about them.

To enable this, simply drag and drop the Convai Crosshair Canvas prefab into the scene.

Convai UI Prefabs

We provide several UI options to display character and user's transcript out of the box that players can use
with the Convai Plugin. You can use and customize these prefabs.

The ConvaiNPC and ConvaiGRPCAPI scripts look for GameObjects with Convai Chat UI Handler as a
component, and send any transcripts to the script so that it can be displayed on screen.

Types of UI

Subtitle

Prefab Name: Convai Transcript Canvas - Subtitle

The user and character transcripts are displayed in the bottom like subtitles.

Question-Answer

Prefab Name: Convai Transcript Canvas - QA

The user's transcript is displayed in the top where as the character's transcript is displayed in the bottom.

ChatBox

Prefab Name: Convai Transcript Canvas - Chat

Both the user's and the character's transcripts are displayed one after other in a scrollable chat box.

Android

Prefab Name: Convai Transcript Canvas - Android

Identical to UI. Includes a button that can be pressed and held for the user to speak. Ideal for
portrait orientation of screen.

Subtitle

Convai Chat UI Handler Component

Field Function

Character Name The name of the character that is currently speaking.

Character Text The transcript of what the character is speaking.

Character Text Color
The color of the text or the speaker name when the transcript is displayed
when the character is speaking.

User Name The name of the user that is currently speaking.

User Text The transcript of what the user is speaking.

User Text Color
The color of the text or the speaker name when the transcript is displayed
when the user is speaking.

Is Character Talking A flag that is true when the character is currently speaking.

Is User Talking A flag that is true when the user is currently speaking.

User Text Field Text mesh pro field for the user's transcript to be displayed.

Character Text Field Text mesh pro field for the character's transcript to be displayed.

UI Type The type of the UI that we are displaying.

Functions to Know

SendCharacterText
A public function that sends a string of text to be displayed as
character transcript along with the name of the character who said

SendUserText
A public function that sends a string of text to be displayed as user
transcript.

Neck and Eye Tracking
Follow these steps to enable your character's head and eyes to follow the player.

While this is not an in-built Convai feature, you can easily allow your characters to follow the player with
there head and eyes.

Add Animation Rigging

You will need the Animation Rigging Package. To import it, go to Windows > Package Manager.

Go to the Unity Registry.

In the Packages Tab, Scroll down to find the package Animation Rigging and Click Install.

Add Rigs and Configure them

Go to your character's GameObject and add a Rig Builder Component.

Add an empty child GameObject. Name it Neck Rig.

In the NeckRig, add a Rig Component and a Multi-Aim Constraint Component.

Find the head or neck bone of the model. You will have to choose it carefully, since every model is
different. Pick the one that seems to move the head around.

In the Multi-Anim Constraint component, add the Neck/Head GameObject to the Constrained Object field
and the in the Source Objects, add the Camera GameObject of the Player GameObject.

Check the orientation of your model's neck GameObject (Toggle the Tool Handle Rotation to Local).
Update the Aim Axis and the Up Axis based on that.

Set the Min Limit and Max Limit fields to -45 and 45 respectively, so that the neck rotation is not uncanny.

Back in the NPC GameObject, Set the Rig field in the Rig Builder as the NeckRig GameObject.

Scripts Overview
Below is a detailed overview of all the Scripts that help power Convai's Unity Plugin.

Script Name Docs Link

ConvaiNPC.cs ConvaiNPC.cs

ConvaiGRPCAPI.cs ConvaiGRPCAPI.cs

ConvaiActionsHandler.cs ConvaiActionsHandler.cs

ConvaiChatUIHandler.cs ConvaiChatUIHandler.cs

ConvaiCrosshairHandler.cs ConvaiCrosshairHandler.cs

ConvaiHeadTracking ConvaiHeadTracking

ConvaiTextInOut.cs ConvaiTextInOut.cs

ConvaiBlinkingHandler.cs ConvaiBlinkingHandler

ConvaiBlinkingHandler

https://app.gitbook.com/o/yhjBBdSSQMbFG6fdY5j9/s/EtUJA212Zc1S9ACc8T4l/~/changes/120/plugins-and-integrations/unity-plugin/scripts-overview/convaiblinkinghandler

ConvaiNPC.cs
This page gives a small overview of the "ConvaiNPC.cs" script that controls the
NPC.

Only go through this if you want to customize the behavior of the NPC. Only proceed if you are
familiar with gRPC and how to use it in Unity.

To understand the script in even more depth, please check out the comments in the script.

Introduction

The ConvaiNPC.cs script is our first dive into the vast array of Convai's conversational agent creation
tools. We attach this script to the NPC that we want to be our conversational agent. It contains only an
instance of the Character Chatbot but is enough for us to get our hands dirty and learn how the Convai
Pipeline works. We can also replicate the script to create our own conversation agent.

Requirements

Before using ConvaiNPC , ensure that:

You have integrated the Convai Unity plugin into your Unity project.

You have the necessary UI elements and components (e.g., ConvaiChatUIHandler ,

ConvaiGlobalActionSettings , ConvaiCrosshairHandler) correctly set up in your
scene.

You have defined character names, IDs, and other settings in the Inspector.

Properties

Serialized Fields

Character Settings

characterID : A unique identifier for the character.

characterName : The display name of the character.

isCharacterActive : Indicates whether the character is currently active.

Include Components

These properties determine whether specific components should be included for the character:

includeActionsHandler : Include the ConvaiActionsHandler component.

includeLipSync : Include the ConvaiLipSync component.

includeHeadEyeTracking : (Not used in this script)

includeBlinking : (Not used in this script)

Do Not Edit

These properties and fields are not meant for direct editing and are used for internal functionality:

stringCharacterText : Internal field for character text processing.

_responseAudios : Internal list to store response audio data.

_actionConfig : Internal reference to action configuration.

_actionsHandler : Internal reference to ConvaiActionsHandler component.

_isActionActive : Internal flag to determine if actions are active.

_isLipSyncActive : Internal flag to determine if lip syncing is active.

_lipSyncHandler : Internal reference to ConvaiLipSync component.

_playingStopLoop : Internal flag to control audio playback loop termination.

GetResponseResponses : Internal list to store response data.

Let's go through the individual functions that are being called and understand the flow of control:

Imports

We will include a bunch of Utility Scripts in our Convai NPC Script. These contain a gRPC API script that
contains a bunch of utility methods used to connect to the servers and send and receive data from the
servers. We also have scripts to handle the actions, UI, LipSync, and Crosshairs (player look at pointer).

using ;System.Collections1
2
using ;UnityEngine3
using ;UnityEngine.SceneManagement4

5
using ;Grpc.Core6
using ;Service7

8
using ;System.Collections.Generic9

10
using ;Convai.gRPCAPI11
using ;Convai.ActionHandler12
using ;Convai.UIHandler13
using static Convai.LipSync.ConvaiLipSync;14
using ;Convai.LipSync15
using ;Convai.CrosshairHandler16

Awake()

In the awake function, we initialize various game objects references present in the scene that we will need
to connect with the various components of the Convai Pipeline.

We find game objects for the following:

gRPC API: Responsible for communicating with the Convai servers.

Chat UI: Responsible for displaying the transcripts from users and the characters.

Global Actions Settings: Responsible for setting up the global actions related settings like the
interactable characters and interactable objects.

Crosshair Handler: Responsible for identifying the object or character being pointed at.

We also initialize the components that are part of the character gameObject. These help us figure out
which features need to be initialized.

Action Handler: Script responsible for setting up the action following by the character.

Lip Sync: Script responsible for handling the lipsync.

private void Awake()

Start()

In the Start function, we will start one coroutine that is responsible for capturing responses from the server
and playing them. We will also initialize the gRPC connection.

private void Start()

Update()

In the update function, we do the following:

We start recording when the space bar is pressed, we start sending chunks of audio to the server.

When the left control is released, we stop recording and let the server know that we are ready for a

response, and the server sends a response (which is updated in the getResponseResponses array).

The Update function also monitors the getResponseResponses array and when the array is not
empty, i.e. we have a response from the server that needs to be spoken out loud, it processes the response

received from the server (in the ProcessResponse()).

private void Update()

ProcessResponse()

ProcessResponse() decides whether the response is audio data or action data. Based on that the

script either creates and adds AudioClips to a playlist (ResponseAudios) or sends the response to the
action handler for further processing.

/// <summary>
/// When the response list has more than one element,
/// then the audio or the actions will be added to a playlist.
/// This function adds individual responses to the list.
/// </summary>
/// <param name="getResponseResponse">
/// The getResponseResponse object that will be processed
/// to add the audio or action and transcript to the playlist
/// </param>
void ProcessResponse(GetResponseResponse getResponseResponse)

playAudioInOrder()

The script also plays a talking animation when the playlist is not empty (through the

playAudioInOrder() function).

/// <summary>
/// This function plays the streamed audio clips
/// received from the server in the order they are received.
/// </summary>
private IEnumerator playAudioInOrder()

How to Use

To use the ConvaiNPC script to create intelligent NPC behavior:

1. Attach the ConvaiNPC script to the GameObject representing your NPC character.

2. Configure the character settings, including characterID , characterName , and

isCharacterActive .

3. Choose which components to include for the character behavior using the

includeActionsHandler and includeLipSync properties.

4. Ensure that you have the necessary UI elements and components (e.g., ConvaiChatUIHandler ,

ConvaiGlobalActionSettings , ConvaiCrosshairHandler) correctly set up in your
scene.

5. Implement logic in your game scripts to call methods like StartListening and

StopListening to control when the character starts and stops talking.

6. Process responses received from characters using the ProcessResponse method.

7. Customize character animations and actions based on your game's requirements.

ConvaiGRPCAPI.cs
This page gives a small overview of the "ConvaiGRPCAPI.cs" script that handles the
inputs and outputs to the server.

Only go through this if you want to customize the behavior of the NPC. Only proceed if you are
familiar with gRPC and how to use it in Unity.

To understand the script in even more depth, please check out the comments in the script.

ConvaiGRPCAPI is responsible for all server-client communications and other data processing. This
function effectively handles the nitty-gritty side of our plugin and is not meant to be edited.

This script is usually added as part of the Camera GameObject in the player controller. This is so that the
attached trigger collider can be used to determine which is the active character currently being spoken to.

Let's go through the individual functions that are being called and understand the flow of control:

Imports

We will import Service which is a script that has been created from a gRPC protocol buffer. This includes
all the tools necessary for communicating with the server.

using ;System1
using ;System.Threading.Tasks2

3
using ;UnityEngine4

5
using ;Grpc.Core6
using ;Service7
using static Service.GetResponseRequest.Types;8
using ;Google.Protobuf9

10
using ;Convai.NPC11
using ;Convai.APIKeySetup12
using ;Convai.UIHandler13

14
using ;System.Collections.Generic15

Awake()

The awake function sets up the API key and initializes the script. It also gets the reference to the Chat UI
Handler so that transcripts from users and the character can be handled.

private void Awake()

Update()

The update function primarily handles the Chat UI and sends the user's transcript to the chat handler.

private void Update()

OnTriggerEnter()

This function listens to any trigger collisions. Here it is looking for trigger collision with the collider attached
to the camera, that we use to identify which character is currently being spoken to.

We check if the object that triggered the collider has the tag character and has the ConvaiNPC component
attached to it. If there is, the current character is set as active and the previous character is set as inactive.

/// <summary>
/// This function is called when a collider enters the trigger zone of the GameObject.
/// It sets the active character based on the character the player is facing.
/// </summary>
/// <param name="other">The collider of the object that entered the trigger zone</param>
private void OnTriggerEnter(Collider other)

ProcessRequestAudiotoWav()

This function converts the audio recorded an as Unity audioClip and converts it to byte data in the wav
format.

/// <summary>
/// Converts an audio clip into WAV byte data.
/// </summary>
/// <param name="requestAudioClip">The audio clip to be converted</param>
/// <returns>Byte array containing WAV audio data</returns>
public byte[] ProcessRequestAudiotoWav(AudioClip requestAudioClip)

Convert16BitByteArrayToFloatAudioClipData()

This function converts 16-bit byte audio data into to an array of float data that can be used to create a Unity
audioClip.

/// <summary>
/// Converts a byte array representing 16-bit audio samples to a float array.
/// </summary>
/// <param name="source">Byte array containing 16-bit audio data</param>
/// <returns>Float array containing audio samples in the range [-1, 1]</returns>
float[] Convert16BitByteArrayToFloatAudioClipData(byte[] source)

ProcessStringAudioDataToAudioClip()

This function converts string audio data into to a Unity audioClip.

/// <summary>
/// Converts string-encoded audio data to an AudioClip.
/// </summary>
/// <param name="audioData">String containing base64-encoded audio data</param>
/// <param name="stringSampleRate">String representing the sample rate of the
audio</param>
/// <returns>AudioClip containing the decoded audio data</returns>
public AudioClip ProcessStringAudioDataToAudioClip(string audioData, string
stringSampleRate)

ProcessByteAudioDataToAudioClip()

This function converts byte audio data into to a Unity audioClip.

/// <summary>
/// Converts a byte array containing audio data into an AudioClip.
/// </summary>
/// <param name="byteAudio">Byte array containing the audio data</param>
/// <param name="stringSampleRate">String containing the sample rate of the audio</param>
/// <returns>AudioClip containing the decoded audio data</returns>
public AudioClip ProcessByteAudioDataToAudioClip(byte[] byteAudio, string
stringSampleRate)

StartRecordAudio()

The function initializes the connection to the server and the stream with the configuration of the data and
some headers to be sent the server. The script starts recording the audio using the default microphone. It
then starts a coroutine that will listen to any responses from the server

(ReceiveResultFromServer()).

While the mic is recording, we get the data from the audioclip to which the Unity microphone class is
writing and then asynchronously calls a function that will process the audio and send it to the server as a

stream of audio data (ProcessAudioChunk()).

Once the microphone stops recording (handled by the StopRecordAudio() function). The final audio
data is sent for processing. After this we close the request stream to the server.

/// <summary>
/// Starts recording audio and sends it to the server for processing.
/// </summary>
/// <param name="client">gRPC service Client object</param>
/// <param name="isActionActive">Bool specifying whether we are expecting action
responses</param>
/// <param name="recordingFrequency">Frequency of the audio being sent</param>
/// <param name="recordingLength">Length of the recording from the microphone</param>
/// <param name="characterID">Character ID obtained from the playground</param>
/// <param name="actionConfig">Object containing the action configuration</param>
public async Task StartRecordAudio(ConvaiService.ConvaiServiceClient client, bool
isActionActive, int recordingFrequency, int recordingLength, string characterID,
ActionConfig actionConfig)

StopRecordAudio()

Stops the microphone from recording audio.

 /// <summary>
 /// Stops recording and processing the audio.
 /// </summary>
 public void StopRecordAudio()

ReceiveResultFromServer()

This function listens to the server for any results that it sends for the current query until the complete
response is received from the server. This response is received in chunks. The chunks are classified into
Audio Response or Action Response and then sent to the ConvaiNPC and ConvaiActionHandler
respectively for processing.

/// <summary>
/// Periodically receives responses from the server and adds it to a static list in
streaming NPC
/// </summary>
/// <param name="call">gRPC Streaming call connecting to the getResponse function</param>
async Task ReceiveResultFromServer(AsyncDuplexStreamingCall<GetResponseRequest,
GetResponseResponse> call)

AddByteToArray()

A utility function that adds wav header to audioByteData to make it compatible with wav format.

/// <summary>
/// Adds WAV header to the audio data

/// </summary>
/// <param name="audioByteArray">Byte array containing audio data</param>
/// <param name="sampleRate">Sample rate of the audio that needs to be processed</param>
/// <returns>Byte array with added WAV header</returns>
byte[] AddByteToArray(byte[] audioByteArray, string sampleRate)

ConvaiActionsHandler.cs

Only go through this if you want to customize the behavior of the NPC. Only proceed if you are
familiar with gRPC and how to use it in Unity.

To understand the script in even more depth, please check out the comments in the script.

The ConvaiActionHandler script is responsible for handling the character specific actions settings. These
specifically contain the actions that the character can perform. The script also parses the action responses
received from the server and performs them in a sequence.

Imports

We will import Convai NPC Script which we will use to keep track of the current NPC by which the actions
are supposed to be performed by.

using ;Convai.NPC
using ;Service

using ;System
using ;System.Collections
using ;System.Collections.Generic
using ;System.Security.Cryptography.X509Certificates

using ;TMPro
using ;UnityEngine

ActionChoice

The Action Choice enum is used to display the list of actions in the editor. This helps us choose the action
in the script. We use the enum later to choose the function corresponding to the action.

// STEP 1: Add the enum for your custom action here.
public enum ActionChoice
{
 NONE,
 JUMP,
 CROUCH,
 MOVE_TO,
 PICK_UP,
 DROP
}

ActionMethod

This class is used to keep track of the animations and the action enum corresponding to each action. An
array of this class is used to keep track of all the actions that the character can perform.

[Serializable]
public class ActionMethod
{
 [SerializeField] public string Action;
 [SerializeField] public string animationName;
 [SerializeField] public ActionChoice actionChoice;
}

ConvaiAction

This class is used to internally track the actions. While parsing the action, we break it down into a verb
and, if present, a target. We use this data in our parser.

public class ConvaiAction
{
 public ActionChoice verb;
 public GameObject target;
 public string animation;

 public ConvaiAction(ActionChoice verb, GameObject target, string animation)
 {
 this.verb = verb;
 this.target = target;
 this.animation = animation;
 }
}

Awake()

In the awake function, we initialize the Global Actions settings and get an instance of the current NPC's
Convai NPC component.

// Awake is called when the script instance is being loaded
private void Awake()

Start()

In the start function, we will initialize the actions config that contains all the actions related information like
the actions that the current character can do and objects and the characters present in the scene. It also

starts the coroutine PlayActionList() that listens and parses the actions that we receive as
response from the server.

// Start is called before the first frame update
private void Start()

ParseActions()

The parse actions function takes the string containing the list of actions as an input and breaks it down into
an object of ConvaiAction type. It converts the action to a verb and an object (or a target). It also gets a
animation corresponding to the action string and the corresponding action enum.

After creating the Convai Action object, it adds it to a playlist, that will be played with the

PlayActionList() function.

public void ParseActions(string ActionsString)

PlayActionList()

This function checks a action playlist and execute the actions in order they are added to the playlist.

public IEnumerator PlayActionList()

DoAction()

The Do Action function uses the action Enum and the Target to execute the function corresponding to the
action.

public IEnumerator DoAction(ConvaiAction action)
{
 // STEP 2: Add the function call for your action here corresponding to your enum.
 // Remember to yield until its return if it is a Enumerator function.

}

AnimationActions()

The animation Actions function executes actions that do not have a corresponding functions. Specifically
cosmetic actions that are only supposed to play an animation.

private IEnumerator AnimationActions(string animationName)

Action Implementation Methods

This region is where we add the functions corresponding to each action.

// STEP 3: Add the function for your action here.
#region Action Implementation Methods
 .
 .
 .
#endregion

ConvaiLipSync.cs

Adding Lip-Sync to your Character

To understand the script in even more depth, please check out the comments in the script.

Introduction

The ConvaiLipSync class is responsible for handling the lip sync based on the facial animation data
received from the server based on the character's response.

Requirements

Before using the script, please ensure the following:

The animations do not have any facial blendshapes.

The animator avatar for the character had the Jaw bone mapping set to none.

The character has blendshapes compatible with Oculus VR Visemes or Reallusion CC4 Extended
Visemes.

Properties

Public or Serialized Fields

Skinned Mesh Renderers

HeadSkinnedMeshRenderer : Skinned Mesh Renderer Component for the head of the character.
This field cannot be left empty.

TeethSkinnedMeshRenderer : Skinned Mesh Renderer Component for the teeth of the character.
Leave empty if not available.

TongueSkinnedMeshRenderer : Skinned Mesh Renderer Component for the tongue of the
character, if available. Leave empty if not.

Bones

jawBone : Game object with the bone of the jaw for the character. Leave empty, if unavailable.

tongueBone : Game object with the bone of the tongue for the character. Leave empty, if
unavailable.

Finetuning

tongueBoneOffset : Vector to control the position of the tongue. This can be used to make the look
the tongue natural during lip-sync.

firstIndex : The index of the first blendshape that will be manipulated. Use this if there are
multiple sets of blendshapes in the character's model.

Methods

Start()

Description: This function will automatically set any of the unassigned skinned mesh renderers to

appropriate values using regex based functions. It also invokes the LipSyncCharacter() function
every one hundredth of a second.

Update()

Description: This function will adjust the position of the tongue according to the

tongueBoneOffset value.

GetHeadSkinnedMeshRendererWithRegex(Transform parentTransform) ,

GetTeethSkinnedMeshRendererWithRegex(Transform parentTransform) ,

GetTongueSkinnedMeshRendererWithRegex(Transform parentTransform)

Description: These functions find the Head, Teeth and Tongue skinned mesh renderers components if

present in the children of the parentTransform using regex.

LipSyncCharacter()

Description: This function will check if the list containing the facial animation data has any data. If it
has any facial animation data, the function will adjust the face based on the data received.

How to use

To use the ConvaiLipSync script, follow these steps:

1. Attach the ConvaiLipSync component to the character.

2. Select the type of blendshapes that you have from the BlendshapeType field: Oculus (OVR) or

Reallusion CC4 Extended (ReallusionPlus).

3. Add the Skinned Mesh Renderer component containing the facial blendshapes to the

HeadSkinnedMeshRenderer field. This is mandatory.

4. If there are Skinned Mesh Renderers containing blendshapes pertaining to the teeth and tongue, add

them to the TeethSkinnedMeshRenderer and the TongueSkinnedMeshRenderer fields
respectively. Leave them blank if not.

5. Similarly, if there are GameObjects for bones of the Jaw and the Tongue, add them to the JawBone

and TongueBone fields respectively.

6. Adjust the Tongue Bone for a more natural look with the TongueBoneOffset field.

7. If your character model has more the one sets of blendshapes, use the firstIndex field to set the
index of the first blendshape that we want to manipulate.

ConvaiChatUIHandler.cs

To understand the script in even more depth, please check out the comments in the script.

Introduction

The ConvaiChatUIHandler class is a versatile component in Unity that facilitates the creation of
various types of chat-based user interfaces (UIs). It enables characters and users to exchange messages,
and it can be configured for different UI styles, such as subtitles, question-answer interfaces, and chat
boxes.

Requirements

Before using ConvaiChatUIHandler , ensure that:

The GameObject containing this script is set up with the necessary UI components (e.g.,
TextMeshProUGUI for displaying text).

The character and user names are defined, and default texts are provided.

The chat UI type (UIType) is selected according to the desired style (Subtitle, QuestionAnswer, or
ChatBox).

Properties

Serialized Fields

Character Settings

characterName : Display name of the character.

characterText : Default text of the character.

characterTextColor : Color of the character's text.

User Settings

userName : Display name of the user.

userText : Default text of the user.

userTextColor : Color of the user's text.

UI Components

userTalkingMarker : GameObject active when the user is talking.

userTextField : TextMeshProUGUI component for displaying the user's text.

characterTextField : TextMeshProUGUI component for displaying the character's text.

UI Settings

chatUIActive : Indicates whether the chat UI is currently visible.

isCharacterTalking : Indicates whether the character is currently talking.

isUserTalking : Indicates whether the user is currently talking.

uIType : Specifies the type of UI to use (Subtitle, QuestionAnswer, or ChatBox).

Methods

Awake()

Description: This method finds the necessary game objects based on the selected uIType during
Awake. It sets up references to UI elements.

Start()

Description: On Start, this method sets default values for character and user names if not already
provided.

Update()

Description: In Update, this method refreshes the UI based on the current state. It updates the user's

text, character's text, and user talking marker visibility according to the selected uIType .

SendCharacterText(string charName, string text)

Description: This method processes text coming from the character based on the selected uIType .
It updates the character's text with the provided text.

SendUserText(string text)

Description: This method processes text coming from the user based on the selected uIType . It
updates the user's text with the provided text.

ChatBox-Specific Methods

SendCharacterChatBoxMessage(string currentCharacterName, string text)

Description: This private method handles the display of the character's message in the chat box UI. It
appends messages if they are from the same character or creates new messages if necessary.

SendUserChatBoxMessage(string text)

Description: This private method handles the display of the user's message in the chat box UI. It
activates the chat UI if the user is talking, appends messages if needed, and updates the last message
if the user sends consecutive messages.

How to Use

To utilize ConvaiChatUIHandler and create chat-based UIs:

1. Attach the ConvaiChatUIHandler script to the GameObject representing the chat UI.

2. Customize character and user names, default texts, and text colors in the Inspector.

3. Assign the necessary UI components (TextMeshProUGUI, GameObjects) to the corresponding fields
in the Inspector.

4. Choose the appropriate UI type (uIType) based on your desired chat UI style (Subtitle,
QuestionAnswer, or ChatBox).

5. Implement logic in your game scripts to call SendCharacterText and SendUserText methods
to update the chat UI with character and user messages.

Practical Use Case Scenario

Scenario 1: Subtitle-Style UI

In a story-driven game, use the ConvaiChatUIHandler with the UIType.Subtitle setting to

display character dialogues as subtitles. As the character speaks, call SendCharacterText to update

the UI with character lines, and similarly, use SendUserText to display user responses.

Scenario 2: Chat Box UI

For a chat-based interaction in a game, set up the chat UI using UIType.ChatBox . As characters and

users send messages, call SendCharacterText and SendUserText to update the chat box with
the conversation. The chat box will display messages from multiple characters and users.

Scenario 3: Question-Answer UI

In an interactive dialog system, configure the UI as UIType.QuestionAnswer . Use

SendCharacterText to present character questions and SendUserText to display user-selected
answers. This creates an engaging question-and-answer dialogue interface.

ConvaiCrosshairHandler.cs

To understand the script in even more depth, please check out the comments in the script.

The ConvaiCrosshairHandler script is responsible for managing the crosshair behavior in the
Convai application. It allows detection of the Convai game object currently under the player's crosshair,
enabling interactions with the focused object or character. This script is crucial for providing a user-friendly
and interactive experience within the Convai application.

Properties

Cached References

_camera (Type: Camera): A reference to the player's camera, obtained from the GameObject
tagged as "Player." This camera is used to determine what the player's crosshair is looking at.

_globalActionSettings (Type: ConvaiGlobalActionSettings): A reference to the

ConvaiGlobalActionSettings component, which stores information about interactable objects
and characters within the Convai application.

Methods

Awake()

Description: Initializes the script by finding necessary components in the scene. It locates the

ConvaiGlobalActionSettings component and retrieves the player's camera.

FindPlayerReferenceObject()

Description: Finds the reference object currently under the player's crosshair. It uses raycasting from
the center of the screen to detect what the crosshair is looking at.

Returns: A reference string for the interactable object or character under the crosshair. Returns
"None" if no valid hit is detected.

FindInteractableReference(Object lookingAtGameObject)

Description: A helper method to find the reference of an interactable object or character based on the
GameObject that the crosshair is looking at.

Parameters:

lookingAtGameObject (Type: Object): The GameObject being looked at by the crosshair.

Returns: A reference string for the interactable object or character. Returns "None" if no matching
reference is found.

How to Use

To implement crosshair functionality in your Convai application using the ConvaiCrosshairHandler
script, follow these steps:

1. Attach the ConvaiCrosshairHandler script to an appropriate GameObject in your scene, such
as the player's character or a dedicated crosshair object.

2. Create and configure a ConvaiGlobalActionSettings component in your scene. This
component should contain information about the interactable objects and characters within your
Convai application.

3. In the Inspector, assign the ConvaiGlobalActionSettings component to the

_globalActionSettings field of the ConvaiCrosshairHandler script.

4. Ensure that the player's camera is correctly tagged as "Player" in your scene hierarchy. The script
relies on this tag to locate the camera.

5. Use the FindPlayerReferenceObject() method to determine the reference of the interactable
object or character currently under the player's crosshair. You can call this method when the player
interacts with the environment to identify the target of their interaction.

ConvaiHeadTracking
Advanced Character Head Tracking

To understand the script in even more depth, please check out the comments in the script.

Description

The ConvaiHeadTracking class is designed to provide head tracking functionalities for a

GameObject (like a character) equipped with an Animator . The primary use-case for this utility is to
facilitate characters that can rotate their heads and eyes to look at a specific target in the scene, creating a
more immersive and interactive experience.

Requirements

An Animator component should be attached to the same GameObject.

Only one instance of ConvaiHeadTracking is allowed per GameObject.

Properties

Tracking Properties

targetObject:

Type: Transform

Description: The object in the scene that the character's head should track.

Default: If not set, it will default to the main camera.

trackingDistanceThreshold:

Type: float

Description: Defines the maximum distance at which the head must still track the target.

Look At Weights

bodyLookAtWeight:

Type: float

Description: Controls the amount of rotation applied to the body to align with the target. A value

closer to 1 will cause the body to rotate more towards the target.

headLookAtWeight:

Type: float

Description: Controls the amount of rotation applied to the head to look at the target. A value

closer to 1 will cause the head to rotate more towards the target.

eyesLookAtWeight:

Type: float

Description: Controls the amount of rotation applied to the eyes to fixate on the target. A value of

1 makes the eyes fully track the target.

lookAway:

Type: bool

Description: Determines whether the character occasionally looks away from the target. If set

as true , the character will look away randomly, mimicking real-life interactions

Default: true

Methods

Public Methods:

OnAnimatorIK(int layerIndex):

Description: A Unity built-in method triggered during the IK pass to handle the head tracking.

Private Methods:

InitializeTargetObject(): Sets the target to the main camera if no target is set.

CreateHeadPivot(): Creates a pivot point for the head's rotation.

UpdateTarget(): Adjusts the look-at weight based on the lookAway property.

PerformHeadTracking(): Manages the actual head tracking based on the distance and angle from the
target.

SetCurrentLookAtWeight(): Modifies the current look-at weight based on the head's pivot angle.

AdjustAnimatorLookAt(): Updates the Animator's look-at position and weight.

DrawRayToTarget(): Draws a ray from the GameObject to the target for debugging purposes.

How to Use

1. Attach this script to a GameObject that has an Animator component.

2. In the Inspector, assign a target for the head to track or leave it blank to default to the main camera.

3. Adjust the look-at weights and the tracking distance threshold as per your requirement.

4. Enable the lookAway option if you want the character to occasionally look away from the target.

Detailed Method Explanations

InitializeTargetObject()

private void InitializeTargetObject()
{
 if (targetObject != null) return;

 Debug.LogWarning("No target object set for head tracking. Setting default target as main
 if (Camera.main != null) targetObject = Camera.main.transform;
}

This method ensures that there is always a target for the head tracking to focus on. If the user hasn't

specified a targetObject , it defaults to the main camera. This is particularly useful for scenarios
where you'd like characters to look at the player (often represented by the main camera) by default. The
user can set the targetObject from the inspector itself if the target-object is desired to be something else

CreateHeadPivot()

private void CreateHeadPivot()
{
 _headPivot = new GameObject("HeadPivot").transform;
 _headPivot.transform.parent = transform;
 _headPivot.localPosition = new Vector3(0, 1.6f, 0);
}

This method creates a virtual pivot point, _headPivot , around which the head will rotate. This pivot is
positioned slightly above the base transform, typically around the neck region of humanoid characters,
allowing for more natural head movements.

UpdateTarget()

private void UpdateTarget()
{
 _desiredLookAtWeight = lookAway ? Random.Range(0.2f, 1.0f) : 1f;
}

This method determines how intently the character should be looking at the target. If lookAway is set to

true , the _desiredLookAtWeight can vary between 0.2 (almost looking away) to 1 (directly at

the target). If lookAway is false , the character will always try to look directly at the target.

PerformHeadTracking()

private void PerformHeadTracking()
{
 ...
}

The core of the head tracking behavior. This method:

1. Checks the distance between the character and the target. If it's within half the

trackingDistanceThreshold , tracking is enabled.

2. Adjusts the rotation of the _headPivot to face the target.

3. Modulates the amount of body rotation based on the head's angle. For larger angles (when the target
is almost beside the character), the body also rotates slightly.

4. Restricts extreme head rotations, ensuring a more natural look.

5. Adjusts the final look-at weights for the body, head, and eyes based on the current situation.

SetCurrentLookAtWeight()

private void SetCurrentLookAtWeight()
{
 ...
}

Modulates the _currentLookAtWeight based on the difference in angle from the head pivot's current
rotation. The goal is to smoothly interpolate between the current look-at weight and the desired one. If the

character is looking almost sideways (angleDifference > 0.65), the weight is reduced to zero,
making the character look forward instead of at the target.

AdjustAnimatorLookAt()

private void AdjustAnimatorLookAt()
{
 ...
}

This method uses the SetLookAtWeight and SetLookAtPosition functions of the Unity's

Animator component to control how the character looks at the target. The various look-at weights (for
body, head, and eyes) are adjusted and clamped within allowed limits, and the character's gaze direction
is set towards the target.

Practical Usecase Scenario:

For a practical application of this script, imagine a museum scene in a game where several NPC (Non-

Playable Character) guides are standing around. Using ConvaiHeadTracking , each guide can turn
their head towards the player as they walk by, making the environment feel more interactive and alive. If

lookAway is enabled, the NPCs won't constantly stare, but occasionally look around, mimicking real-life
behavior.

Notes

The script utilizes Unity's IK system to achieve a smooth look-at functionality.

Care has been taken to ensure the head does not over-rotate, providing a natural appearance.

ConvaiBlinkingHandler
Advanced Character Head Tracking

To understand the script in even more depth, please check out the comments in the script.

Description

The ConvaiBlinkingHandler class manages a character's blinking behavior in Unity. It is designed
to work with a character's face, adjusting the blend shapes of the eyelids to simulate blinking. This script
adds a dynamic and lifelike aspect to character animations.

Requirements

Before using ConvaiBlinkingHandler , ensure the following requirements are met:

SkinnedMeshRenderer: Attach a SkinnedMeshRenderer component to the character's face for
manipulating blend shapes.

Character Name: This script relies on the character's name obtained from a ConvaiNPC script.

Ensure that the character's name is set correctly in ConvaiNPC .

Properties

Serialized Fields

faceSkinnedMeshRenderer :

Type: SkinnedMeshRenderer

Description: The SkinnedMeshRenderer for the character's face. This renderer allows for the
manipulation of blend shapes to control blinking.

indexOfLeftEyelid :

Type: int

Description: The index of the left eyelid blend shape in the SkinnedMeshRenderer.

indexOfRightEyelid :

Type: int

Description: The index of the right eyelid blend shape in the SkinnedMeshRenderer.

minBlinkDuration :

Type: float

Description: The minimum amount of time, in seconds, for a single blink.

maxBlinkDuration :

Type: float

Description: The maximum amount of time, in seconds, for a single blink.

minBlinkInterval :

Type: float

Description: The minimum amount of time, in seconds, between blinks.

maxBlinkInterval :

Type: float

Description: The maximum amount of time, in seconds, between blinks.

Methods

Start()

Description: This method is called when the script starts. It initializes the eyelid blend shape indices
based on the character's name and player preferences. If the indices are not found in preferences, it
searches for appropriate blend shape names in the character's face mesh. If the indices are still not
found, an error is logged. After initialization, it starts the blinking coroutine.

csharpCopy codestring npcName = GetComponent<ConvaiNPC>().characterName;
...
indexOfLeftEyelid = PlayerPrefs.GetInt(leftBlinkKey, -1);
...
StartCoroutine(BlinkCoroutine());

BlinkCoroutine()

Description: This coroutine handles the blinking mechanism of the character. It generates random
blink durations and intervals within the specified minimum and maximum values. During a blink, it
gradually adjusts the blend shape weights to simulate eyelid movement. After each blink, there's a
pause before the next blink occurs.

SetEyelidsBlendShapeWeight(float weight)

Description: This method sets the same weight to both eyelids' blend shapes in the
SkinnedMeshRenderer. It's used to smoothly adjust the eyelid positions during blinking.

How to Use

To implement blinking behavior for a character using the ConvaiBlinkingHandler script, follow
these steps:

1. Attach the ConvaiBlinkingHandler script to the GameObject representing the character.

2. Attach a SkinnedMeshRenderer component to the character's face and assign it to the

faceSkinnedMeshRenderer field in the Inspector.

3. Set the character's name correctly in the associated ConvaiNPC script.

4. Adjust the minBlinkDuration , maxBlinkDuration , minBlinkInterval , and

maxBlinkInterval properties in the Inspector to control the blinking frequency and duration.

5. Ensure that the character's face mesh has appropriate blend shapes for the left and right eyelids.

Practical Use Case Scenario

The ConvaiBlinkingHandler script is particularly useful for creating more realistic and expressive
character animations. It can be applied to various character types, such as NPCs in a game, to make them
blink at random intervals, adding a touch of realism to their appearance.

By following this documentation, you can seamlessly integrate blinking behavior into your character
animations in Unity.

ConvaiTextInOut.cs

A simple script that enables the user to send a text input and receive a text output from Convai.

Awake()

In the awake function, we will initialize the API Key.

private void Awake()

Start()

In the start function, we will initialize the gRPC components, so that we can send the data to the servers.

void Start()

Update()

In the update function, we send the data to the server for processing when the return key is pressed.

void Update()

SendTextData()

In this function, we will first initialize the configuration of the type of data that we will send to the servers
and initiate the link to the server. In this case, that will be data with no audio. Then we start the coroutine to
receive data back from the server. And finally, we send the actual data to the server for processing. After
we have sent the data, we close the link to the server, which lets the server know that we have no more
data to send.

async Task SendTextData()

ReceiveResultFromServer()

This function listens to the server until the server has closed the request from its side and displays any
response that it gets from the server.

async Task ReceiveResultFromServer(AsyncDuplexStreamingCall<GetResponseRequest,
GetResponseResponse> call)

ConvaiPlayerMovement.cs

The ConvaiPlayerMovement script is designed for controlling the movement and camera rotation of a
character in a Unity game using the CharacterController component. It provides a straightforward way to
handle player input for walking, running, jumping, and looking around with the mouse. This script is
essential for creating responsive and immersive player controls in your Unity projects.

Properties

Movement Properties

walkingSpeed :

Type: float (Range: 1 to 10)

Description: The walking speed of the character.

runningSpeed :

Type: float (Range: 1 to 10)

Description: The running speed of the character.

jumpSpeed :

Type: float (Range: 1 to 10)

Description: The speed at which the character jumps.

gravity :

Type: float (Range: 1 to 10)

Description: The gravitational force applied to the character.

playerCamera :

Type: Camera

Description: The camera used to control the character's view.

Look Properties

lookSpeed :

Type: float (Range: 1 to 10)

Description: The speed at which the camera rotates when looking around.

lookXLimit :

Type: float (Range: 1 to 90)

Description: The limit on the camera's vertical rotation, preventing it from over-rotating.

Miscellaneous Property

canMove :

Type: bool

Description: Determines whether the character can move. When set to false, player input is ignored.

Methods

Start()

Description: This method is called on Start and performs initial setup for character movement and
camera control. It locks the cursor to provide a more immersive experience.

Update()

Description: This method is called on Update and handles player input for movement and camera
rotation. It allows the player to switch between walking and running, jump, and look around with the
mouse.

SetupCharacter()

Description: Initializes the _characterController by getting the CharacterController
component attached to the GameObject.

LockCursor()

Description: Locks the cursor to the center of the screen and hides it. This function is used to provide
a clean and immersive gameplay experience.

Jump()

Description: Handles character jumping. If the jump button is pressed ("Jump") and the character is
grounded, it applies an upward force to make the character jump.

ApplyGravity()

Description: Applies gravity to the character's vertical movement. If the character is not grounded, it
simulates the effect of gravity.

MovePlayer(bool isRunning)

Description: Moves the character based on user input. It calculates the movement direction based on
the character's forward and right vectors, as well as the user's input for walking or running.

RotatePlayerAndCamera()

Description: Rotates both the player and the camera based on mouse input. It allows the player to
look around in a first-person perspective. The camera's vertical rotation is limited to prevent over-
rotation.

How to Use

To implement player movement and camera control in your Unity project using

ConvaiPlayerMovement , follow these steps:

1. Attach the ConvaiPlayerMovement script to the GameObject representing the player character.

2. Customize the movement and camera control properties, such as walking speed, running speed, jump
speed, gravity, look speed, and look limits, to match your game's requirements.

3. Assign the player's camera to the playerCamera field to enable camera rotation.

4. Optionally, set the canMove property to false to disable player movement temporarily, such as
during cutscenes or menu screens.

5. Implement other game mechanics or interactions that depend on player movement and camera
control.

ConvaiNPEditor.cs
ConvaiNPC Custom Editor Documentation

Introduction

The ConvaiNPC Custom Editor within the Unity Editor environment is designed to manage and maintain
states of Convai scripts, ensuring a smooth and error-free workflow, especially when changes are made to
game components.

1. Requirements

Before diving into the functionalities, ensure that you're working within the Unity Editor environment as the
script specifically targets editor functionalities.

2. Properties & Fields

ConvaiNPCEditor

_convaiNPC : Reference to the ConvaiNPC component on which this custom editor operates.

StateSaver

RootDirectory : Root directory path where the saved states of Convai scripts are stored.

3. Methods & Utilities

ConvaiNPCEditor

OnEnable() : Initializes the _convaiNPC reference.

OnInspectorGUI() : Overridden inspector GUI to provide an "Apply changes" button, which, when
clicked, confirms the user's decision and applies the changes.

ApplyChanges() : Applies component changes based on the user's selection in the inspector.

ApplyComponent<T>() : Applies or removes a specified component based on conditions. This
function also handles saving or restoring component states.

StateSaver

SaveScriptState() : Saves the state of all Convai scripts in the active scene.

SaveSceneHook

SceneSaved() : Hooks into the Unity's sceneSaved event and invokes SaveScriptState() .

EditorExtensions

Utility extension methods to streamline the saving and restoring processes.

SaveStateToFile<T>() : Saves the state of a specific component to a file.

RestoreStateFromFile<T>() : Restores the state of a specific component from a file.

AddComponentSafe<T>() : Safely adds a component to a GameObject.

GetSavePath() : Generates the save path for a given script's state.

4. Usage Guidelines

1. Adding Components & Saving State:

Once the ConvaiNPC component is attached to a GameObject, you'll see the customized
inspector.

Adjust the settings and components as needed.

Click the "Apply changes" button to apply your modifications. The system will confirm your actions
before proceeding.

The SaveScriptState utility will automatically save the state of all Convai scripts when the
scene is saved.

2. Restoring Component States:

If a component was removed and needs to be added again, upon re-adding, the system will
attempt to restore its state from the saved data.

5. Troubleshooting

Error when adding component: If you receive an error when trying to add a component via the editor,
ensure that there are no conflicts with other scripts or missing references.

State restoration fails: If the state restoration process fails for a component, check the saved file's integrity

and the RootDirectory path.

Note: Always ensure to have backups before making major changes or applying bulk operations.

